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Figure 1: Strategic modifications of a graph selectively harm downstream classifier’s ability to learn patterns in arbitrarily
chosen set of “protected” users.

ABSTRACT
A novel problem setting where a defender seeks to stop a down-
stream user for training an effective GCN over an arbitrarily se-
lected set of protected nodes of a graph is proposed and explored.
A robust graph data protection method, Selective Learnability Lock
(SLL), is developed to address the novel problem setting. SLL uses a
surrogate GCN to approximate the downstream user and optimizes
the topology of the graph to maximize loss on the protected nodes
while minimizing loss on the other nodes. A gradient guidance
optimization is implemented in SLL to allow it to be more robust
and efficienct with regard to dataset size. SLL is experimentally
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effective, providing a better solution than existing possibilities such
as simplistic solutions or random noise, and can be extended to
apply to multi-task scenarios.
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1 INTRODUCTION
Graph structured data (such as social networks, emails, and financial
data [2, 4]) capture the organizational structure and characteristics
of multiple objects (nodes) and their relationships (edges). Graph
Convolution Networks (GCN) have shown remarkable performance
on node classification tasks on graph data, with applications such
as targeted marketing, disease spread prediction, etc. [6, 11].

GCNs can also be used by nefarious users to infer information
about any node in a dataset, resulting in a possible data breach or pri-
vacy violation. Within recent years, increases in the frequency and
size of data breaches and privacy violations that expose sensitive
information have called for increased privacy protection methods
[13]. In 2009, Netflix released anonymized consumer data, remov-
ing all identifying attributes (name, email, etc.) except for movie
ratings and dates. Despite the removal of information, GCNs were
still able to infer sensitive information of the users, violating their
privacy [10]. An effective way to address this risk of privacy breach
is to alter presence of edges (in small enough quantities that the
downstream user is not aware of such modifications, yet enough
that patterns in the graph are destroyed) so that a downstream user
can not perform effective inference by training a GCN. Graph data
poisoning attacks such as Topology Attack [18] or application of
noise can accomplish this. However, these methods harm overall
downstream GCN performance and reduce the usability of graph
structured data for beneficial services mentioned earlier.

There are then two conflicting objectives: 1. Allow graph struc-
tured data to be utilized effectively for authorized services, and 2.
Prevent malicious downstream users from using GCN to infer pri-
vate information about users who wish to remain private. Imagine
the following scenario: A marketing company collaborates with
Facebook to study a product’s appeal and uses survey responses to
identify target customers. Some users opt-out while others partici-
pate and share their information. The company uses the structured
graph of users shared by Facebook to train a model to optimize its
marketing. The model can accurately classify users as good market-
ing targets based on their survey responses and relationships with
other survey respondents. However, the model is also effective at
classifying opted-out users as targets because of the structural de-
pendency among nodes in the graph, violating the opted-out users’
privacy expectations. To protect user’s privacy, Facebook can take
additional steps in the data sharing procedure to limit the abilities
of the marketing company. To address the challenge, we propose to
study the following research problem: How can we achieve a graph
data protection mechanism that hides patterns of private information
on an arbitrarily chosen set of protected nodes, while maintaining
data utility such that effective patterns can be learned on authorized
nodes?

There are two major challenges that make this task nontrivial:

• Because users are connected in graph data, anonymizing
protected users’ information is insufficient - the information
of a few connected, authorized users can still be used to
recover anonymized information [7, 10].
• A trade-off exists between privacy preserving on protected
users and prediction utility on authorized users.

A simple solution to this vulnerability could be to exclude all or
partial relationship data from data sharing. However, excluding

graph relationship data damages the structure of user network that
is necessary for training an accurate GCN, while making it obvious
to the malicious downstream user which data was modified. Instead,
we develop a graph data protection method, Selective Learnability
Lock (SLL), to robustly address the problem.

Our main contributions can be summarized as follows:

• A novel problem setting: partitioning graph nodes into an
authorized set and a protected set, where we (the “defender”)
aim to restrict the ability of a downstream user to train a
GCN to infer information about the protected set, while
allowing a GCN to learn effectively on the authorized set.
• A robust data protection method, Selective Learnability Lock
(SLL), to address the problem. SLL optimizes graph topology
to simultaneously minimize and maximize the losses on the
two sets of nodes. The product of the method is a “lock”: a
relatively small collection of edge modifications that, when
applied to the topology of the graph data, greatly reduces the
ability of a downstream GCN to learn patterns on the pro-
tected nodes while having minimal impact on the authorized
set compared to a GCN trained on the original graph.

2 RELATEDWORKS
Many privacy-focused defense methods on graph data and GCNs
have been studied in recent years [16, 19]. Dataset-based meth-
ods in recent literature focus primarily on producing significant
negative impacts on the capabilities of GCNs trained on altered
datasets. Other privacy protection methods, such as model training
paradigms, can selectively protect user information from being
disclosed by models trained by the data holder.
Privacy protection in graph data structures. A defender at-
tempts to stop an attacker (downstream user) from training effec-
tive GCNs on a dataset by making modifications on (attacking)
the dataset such that there are misleading/no patterns for a down-
stream user to utilize. A budget of modifications to data (i.e., number
of edges or modifications to features) is used to hide the defense
from the downstream user, or attacker. The graph topology at-
tack proposed by Xu et al. demonstrates that a surrogate GCN can
be used to approximate a downstream user effectively, and that
edge modifications which increase the surrogate’s loss are also re-
flected in the training of the downstream GCN [18]. The mutual
information minimization attack by Wang et al. shows other opti-
mization problems that can cause downstream GCNs to have near
random-guessing performance [17]. Peng et al. created graph data
learnability lock, introducing a method to create a function that
can be applied/removed to a graph dataset capable of achieving a
similar effect as other dataset-based attacks [12]. However, all of
these methods harm downstream GCN performance over the entire
graph, not just a selected portion.
Privacy protection in model training. A defender attempts to
stop an attacker (downstream user) from recovering sensitive infor-
mation from GCNs trained by the defender given for public use. In
this scenario, there is no concern for budget since the attacker has
no information regarding the model nor dataset. The projection
unlearning method created by Cong et al. demonstrates an “un-
learning” procedure to make a GCN “forget” patterns learned on a
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specific set of nodes in a dataset [3], allowing a model to have selec-
tive predictive performance. The GCN proposed by Hu et al. utilizes
a specialized loss function that causes the model to only learn an
effective pattern on a specific portion of a graph [5]. Both methods
are effective in allowing for selective performance, but accomplish
selective learnability in models created by the defender.

In our scenario, the data is provided by the defender to the public,
and the downstream user trains a GCN. Our protection method
builds on existing methods in a novel problem setting, selectively
targeting nodes such that a GCN trained on the data will have poor
performance on protected nodes.

3 PROBLEM STATEMENT
In this section, preliminary definitions and notations are given;
then the problem setting is clearly defined.

3.1 Graph and GCN notation
Notations. Let an undirected and unweighted graph be notated
as 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes 𝑣𝑖 ∈ 𝑉 , and edges (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸. We
consider undirected graphs in this work and use a symmetric square
adjacency matrix 𝐴 to denote the existence of edges, where 𝐴𝑖, 𝑗 =

𝐴 𝑗,𝑖 = 1 if an edge is present between nodes 𝑣𝑖 and 𝑣 𝑗 in𝐺 otherwise
𝐴𝑖, 𝑗 = 𝐴 𝑗,𝑖 = 0. A set of perturbations to the edges can be expressed
as a binary matrix Δ𝐴, where𝐴𝑖, 𝑗 represents a “flip” or an inversion
to 𝐴. A modified adjacency matrix can be created by taking the
XOR of 𝐴 and Δ𝐴.
Graph Convolution Network (GCN). Let the 𝐼 th layer of feature
representation of a neural network be notated as𝐻 𝑖 and its weights
𝑊 𝑖 , 𝜎 an activation function such as ReLU. The self-connected
adjacency matrix is notated as 𝐴̃ and 𝐷̃ the diagonal degree matrix.
Then a Spectral GCN is a neural network comprised of 𝐿 layers,
where a forward pass on each feature representation layer is done
via the following equation [6]:

𝐻 (𝐼+1) = 𝜎 (𝐷̃−1/2𝐴̃𝐷̃−1/2𝐻 𝐼𝑊 𝐼 ). (1)

Let a GCN used for node classification tasks be denoted as Θ.
A loss function measures the inaccuracy of the GCN between its
predicted node labels, based on a graph𝐺 , and their respective true
values. The loss is represented as L(𝐺,𝐴|Θ).

3.2 Problem Statement
In a graph 𝐺 , an arbitrarily chosen set of nodes is designated as
protected, notated as 𝐺0. All remaining nodes (the set 𝐺 −𝐺0) are
authorized notes, notated as 𝐺𝑋 . A set of perturbations, Δ𝐴, is
produced by the protection method that can be used to create 𝐺 ′
under a budget of 𝜖 . A downstream GCN Θ′ trained on𝐺 ′ will have
classification accuracy that is poor on nodes in 𝐺0 and relatively
unchanged on nodes in𝐺𝑋 compared to the performance of a GCN
Θ trained on the original graph 𝐺 .

The effectiveness of the protection is determined by the setting–
lowering the performance of the downstream GCN to near random-
guessing on 𝐺0 is ideal, but for most settings, a large reduction
in downstream GCN accuracy can serve as effective deterrent for
malicious users. The need for good/unchanged performance on𝐺𝑋

also strongly depends on the application of the dataset.

4 PROPOSED PROTECTION METHOD:
SELECTIVE LEARNABILITY LOCK (SLL)

The basis for the attack is that maximizing the loss of a surro-
gate GCN (approximating the downstream user) over the protected
nodes will harm a downstreamGCN’s performance on the protected
nodes, and that minimizing the loss over the authorized nodes will
counteract the negative effects on the authorized nodes.

First, a composite loss must be calculated to determine the ideal
locations for edge perturbations Δ𝐴. A surrogate GCN Θ, with
sensible defaults to mimic a downstream user, is created to calculate
the loss of different nodes on the graph. The composite loss is
composed of the sum of the cross-entropy loss of nodes in 𝐺0
and the negative of the cross-entropy loss of the nodes in 𝐺𝑋 .
The adjacency matrix is optimized to minimize the composite loss
via gradient descent, while the surrogate GCN is trained further
using the modified adjacency matrix (𝐴′ = 𝐴 ⊕ Δ𝐴). This bi-level
optimization problem can be formulated as such: 0

let 𝐴′ = 𝐴 ⊕ Δ𝐴,

Θ̃ = min
Θ
L(𝐺,𝐴′ |Θ), (inner loop) (2)

min
|Δ𝐴 | ≤𝜖

L(𝐺𝑋 , 𝐴
′ |Θ̃) − L(𝐺0, 𝐴

′ |Θ̃) . (outer loop) (3)

The gradient of the adjacency matrix 𝐴 w.r.t. the composite
loss is projected onto the ball of 𝜖 , the budget, to create ∇𝐴. The
perturbation matrix Δ𝐴 is then found by taking Bernoulli samples
from ∇𝐴, repeating until the number of modifications present in
the perturbation matrix is less than the budget 𝜖 . The sampling
process is formulated as follows

let 𝑝 = |proj𝜖∇𝐴|,

Δ𝐴𝑖, 𝑗 =

{
sign(∇𝐴𝑖, 𝑗 ) ∗ 1, with 𝑝𝑖, 𝑗 ;
0, with 1 − 𝑝𝑖, 𝑗 .

(4)

4.1 Multitask implementation of SLL
The protection of multiple tasks from a downstream GCN is ac-
complished by expanding the composite loss function for each task,
where the surrogate GCN and loss for tasks 𝑡 ∈ 𝑇 is notated by Θ̃𝑡

and L𝑡 (·), respectively. Then, the composite loss function becomes

min
|Δ𝐴 | ≤𝜖

∑︁
𝑡 ∈𝑇
L𝑡 (𝐺𝑋 , 𝐴

′ |Θ̃𝑡 ) − L𝑡 (𝐺0, 𝐴
′ |Θ̃𝑡 ). (5)

4.2 Optimizations to SLL
Gradient guidance. The vast majority of ∇𝐴, the gradient of the
adjacency matrix, is near-zero. However, many of these near-zero
entries will be added to Δ𝐴 due to their overwhelming count. Pre-
liminary experiments suggest that the gradient is denser in specific
graph edge regions, notably between 𝐺0 and 𝐺𝑋 . To avoid use-
less edge modifications caused by the overwhelming number of
near-zero entries, values of ∇𝐴 in more useful regions are ampli-
fied, while others are reduced. The importance of an edge region
is determined according to the moving average of the density of
gradients calculated. Three distinct regions in 𝐴 are designated for
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this process: the region of possible edges between sets 𝐺𝑋 and 𝐺0,
within the set 𝐺0, and within the set 𝐺𝑋 . Implementation of this
“gradient guidance” during the gradient sampling process allows
more of the budget to be utilized in more effective areas, improving
the overall effectiveness of the protection.
Gradient sampling. The calculation of ∇𝐴 is very expensive, yet
the majority of the gradient will have little useful information. To
reduce the overall memory required, samples of the gradient can
be calculated instead. Building on the effectiveness of the gradient
guidance method, samples can be drawn at disproportionate rates
from each of the graph edge regions mentioned above. The gradi-
ent of a much smaller sampled matrix can be calculated multiple
times in place of the much larger adjacency matrix 𝐴, reducing the
maximum memory required.

Algorithm 1: Psuedocode for selective learnability lock
protection process with optimizations implemented
Δ𝐴← 0;
for 𝑒𝑝𝑜𝑐ℎ𝑠 do

Train Θ̃ one iteration with 𝐴 ⊕ Δ𝐴 ; /* Inner loop */

𝑙𝑜𝑠𝑠 ← L(𝐺𝑋 , 𝐴
′ |Θ̃) − L(𝐺0, 𝐴′ |Θ̃) ; /* Outer loop

*/
for 𝑠 in 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do

𝑅 ← 𝑛 random nodes from 𝐺 ; /* Gradient

sampling */

𝑔𝑟𝑎𝑑 ← ∇𝐴𝑅 (w.r.t. 𝑙𝑜𝑠𝑠);
end
for 𝑟 in regions of 𝐺 do

𝑔𝑟𝑎𝑑𝑟 ← 𝑔𝑟𝑎𝑑𝑟 ∗𝑏𝑖𝑎𝑠𝑟 ; /* Gradient guidance */
𝑏𝑖𝑎𝑠𝑟 ← (𝑏𝑖𝑎𝑠𝑟 + 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔𝑟𝑎𝑑𝑟 ))/2

end
𝑔𝑟𝑎𝑑 ← |proj𝜖𝑔𝑟𝑎𝑑 |;
while 𝑠𝑢𝑚(Δ𝐴) > 𝜖 do

Δ𝐴← Bernoulli sample(𝑔𝑟𝑎𝑑);
end

end

4.3 Attack Robustness
There lies a risk of privacy exposure if a downstream user is able
to identify the protected set of nodes in a graph affected by SLL.
Therefore, SLL must also be analyzed in its robustness to down-
stream attempts to recover information using the presence of the
modifications. However, the identification of protected nodes is
not straightforward, as the downstream user only has access to a
minimal set of labels for training. Even if the downstream user has
access to all labels, it may still not be clear which nodes are part of
the protected set, since nodes of the authorized set do not have 100%
accuracy, while nodes in the protected set do not have 0% accuracy.
Possible approaches to detecting and identifying protected nodes
in SLL-affected graphs could utilize strategies to identify network
structures within the graph, since it is possible that the underlying
patterns of the graph are distinct for the two sets. However, such
methods are nontrivial and we leave their further exploration in
future work.

5 EXPERIMENTS
5.1 Experimental Setup
For a graph dataset, the protected set 𝐺0 is chosen by randomly
selecting 10% of nodes. The rest of the graph, 𝐺𝑋 , is designated
as the authorized set. A budget 𝜖 is set regarding the perturbation
rate, which is a proportion of the number of edges that are already
present in a graph. The effectiveness of SLL is established in a
comparison with other possible methods:
• Simplistic 1: Remove all edges between 𝐺𝑋 and 𝐺0.
• Simplistic 2: Remove all edges between𝐺𝑋 and𝐺0 and edges
within 𝐺0.
• Noise: Generate a small amount of noise to randomly perturb
edges in 𝐺0 within the budget specified by 𝜖 .
• SLL: Selective Learnability Lock constrained under budget
specified by 𝜖 .
• SLL+G: Selective Learnability Lock with Gradient Guidance
constrained under budget specified by 𝜖 .

SLL is tested on two citation networks (Citeseer [15] and Cora
[8]) and three social networks (Polblogs [1], Blogcatalog [14], and
flickr [9]). The evaluation of the effectiveness of each protection
method is done using GCNs with sensible defaults. Two GCNs with
the same neural architectures are trained, one using the original
graph data and the other using the “locked” data. The change in
predictive performance between the locked and original data is
measured over the two partitioned sets of the graph. To quantify
the effectiveness of each method, the effectiveness metric 𝐸 =

−Δ𝑎𝑐𝑐𝐺0 − |Δ𝑎𝑐𝑐𝐺𝑋
| is utilized. 𝐸 is penalized by any change in

downstream model accuracy on the set 𝐺𝑋 , while reductions in
accuracy over 𝐺0 are rewarded. The objective of the methods is to
maximize 𝐸.

5.2 Experimental Results and Discussion
The results in Figure 2 show that SLL and SLL+G are significantly
more effective than other methods at accomplishing the objective.
The Simplistic 1 method is mostly ineffective for all datasets, while
Simplistic 2 is more effective for smaller datasets such as Polblogs
(1,490 nodes) compared to flickr (7,575 nodes). The effectiveness of
SLL+G appears more consistent than SLL, outperforming the Noise
method for all datasets.

To help understand the effectiveness of SLL, we can examine
how homophily has changed Δ𝐻 for various methods on a dataset,
using Cora as an example. Homophily is a measure of how often
similar nodes share an edge, so we expect that homophily would
decrease in set 𝐺0, presumably because that would hurt the surro-
gate GCN’s performance on 𝐺0 the most (minimizing the second
term of Equation 3), while homophily would stay roughly equal or
increase to preserve performance in set 𝐺𝑋 (minimizing the first
term of Equation 3). The change in homophily Δ𝐻 is used. The
method SLL* is also tested. SLL* is the implementation of SLL, but
the loss equation does not include minimization of loss over set
𝐺𝑋 , and is instead as follows:

min
|Δ𝐴 | ≤𝜖

−L(𝐺0, 𝐴
′ |Θ̃) . (outer minimization) (6)

Because SLL* is not influenced by loss of 𝐺𝑋 , we expect that
the homophily of 𝐺𝑋 will significantly decrease and downstream
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Figure 2: Mean effectiveness E of different methods on datasets by number of edges modified

accuracy over𝐺𝑋 will be poor. This is because the overall structure
of the graph is uniform, so changes to maximize harm to𝐺0 should
also ripple negative effects to the entire graph.

Table 1: Effectiveness of various protection methods on Cora
dataset with 10% of nodes randomly selected as 𝐺0

Δ𝐻 by set Δ𝑎𝑐𝑐 by set
Method 𝜖 ′ 𝐺0 𝐺𝑋 Between 𝐺0 𝐺𝑋

Simplistic 1 85 -53 0 0 -2.6% 0.0%
Simplistic 2 1165 -53 0 -1080 -26% -2.1%
Noise in 𝐺0 1330 -914 0 0 -34% -5.0%
SLL* 1603 -76 -340 -919 -21% -10%
SLL 1061 -33 -174 -351 -47% -1.8%
SLL+G 1346 -55 -11 -1006 -70% 1.0%

The implementation of SLL without the loss term to minimize
loss on 𝐺𝑋 does not perform as well as the complete composite
loss-based SLL. This implementation, SLL*, chose to modify more
edges between 𝐺0 and 𝐺𝑋 to destroy overall graph patterns, and
was not as efficient in harming𝐺0’s downstream performance. The
experimental results demonstrate that the most efficient edges to
target to selectively damage downstream GCN performance are
between the protected set and authorized set. SLL focused most of
its budget on decreasing homophily between nodes in the protected
set and the authorized set. When gradient guidance is implemented,
even more budget is utilized in this edge area. Gradient guidance
significantly reduced the budget spent on 𝐺𝑋 , which is the largest
graph edge region. Not much budget was spent on harming ho-
mophily within 𝐺0. This is possibly because too much harm to
homophily within 𝐺0 would negatively impact the loss in 𝐺𝑋 as
patterns are destroyed. The changes to graph homophily produced
by SLL do not necessarily guarantee worse performance for specific
sets of nodes.

Table 2: Effectiveness of gradient guidance on SLL on datasets
of varying size and perturbation rate

# nodes Dataset Perturbation rate 𝐸𝑓𝑆𝐿𝐿+𝐺 𝐸𝑓𝑆𝐿𝐿

7575 flickr 0.1 61.8 3.2
0.25 30.5 -0.5
0.5 20.7 -0.8

5196 BlogCatalog 0.1 23.8 15.4
0.25 16.8 5.1
0.5 12.2 1.9

3312 citeseer 0.1 534.2 197.7
0.25 295.0 102.6
0.5 162.8 71.0

2708 cora 0.1 373.9 428.8
0.25 235.7 191.3
0.5 134.1 108.8

1490 Polblogs 0.1 166.1 194.7
0.25 122.8 86.4
0.5 116.9 49.2

5.3 Gradient Guidance Experimental
Performance

SLL was tested on five datasets with and without gradient guidance
implemented. For conciseness, a measure of effectiveness, 𝐸 is cal-
culated for each experiment as follows: 𝐸 = −Δ𝑎𝑐𝑐𝐺0 − |Δ𝑎𝑐𝑐𝐺𝑋

|.
𝐸𝑔𝑢𝑖𝑑𝑒𝑑 is the effectiveness measure of SLL with gradient guidance,
while 𝐸𝑆𝐿𝐿 is the baseline effectiveness measure of SLL without
gradient guidance.

To examine the improvements of gradient guidance, the ef-
ficiency of SLL and SLL+G is compared. The efficiency metric
𝐸𝑓 = 106 ∗ 𝐸/edges modified is used to compare across different
numbers of edges modified.

Figure 2 shows that SLL+G was able to achieve higher effective-
ness is most datasets. Evidenced by Table 2, gradient guidance pro-
vided significant improvements in efficiency at most perturbation
rates, especially on datasets of larger size. Smaller datasets (cora,
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Figure 3: Change in downstream accuracy by location and
budget

Figure 4: Change in downstream accuracy by location and
budget with gradient guidance optimization applied

Polblogs) were impacted less by gradient guidance, while larger
datasets (BlogCatalog, citeseer, flickr) saw significant increases in
the efficiency of SLL. This is likely due to the gradient sampling
process being overwhelmed by the larger adjacency matrix and
targeting less important edges to be modified. By implementing the
gradient guidance optimization, SLL becomes much more robust,
with the change in predictive accuracy becoming more consistent
across all datasets regardless of size, as shown in figure 3 and figure
4.

5.4 Multitask Experiment
Two additional classification tasks 𝐹𝑒𝑎𝑡𝐴 and 𝐹𝑒𝑎𝑡𝐵 are created by
discretizing the top 2 highest-entropy features and are incorporated
into the SLL loss equation. The features are hidden from the down-
stream model and surrogate models used in SLL. The classification
framework remains the same. Evaluation is performed by separate
GCNs, each with sensible defaults, trained for each task.

As shown in 3, SLL can be effective for multiple tasks simul-
taneously. The effectiveness varies significantly by task, with the
label being affected the most. Further exploration into features with
different distributions within graphs could further explain why SLL
is more effective on some features.

6 CONCLUSION
In this paper, we start by exploring the rising occurrence of data
privacy violations relate to GCNs, and how this is in conflict with

Table 3: Effectiveness of SLL on multiple tasks of Citeseer
and Cora dataset with 10% of nodes randomly selected as 𝐺0

Dataset Ptb Rate Edges Modified Task E

Citeseer 0.25 2243 Label 0.647
Feat A 0.071
Feat B 0.109

Citeseer 0.5 4508 Label 0.735
Feat A 0.121
Feat B 0.140

Cora 0.25 2646 Label 0.573
Feat A 0.134
Feat B 0.059

Cora 0.5 5279 Label 0.676
Feat A 0.202
Feat B 0.052

the ability to provide datasets that are useful for services. With
these two conflicting objectives, a new problem setting is proposed
- protect an arbirarily chosen subset of nodes in a graph from down-
stream GCN inference, while allowing the rest of the graph to have
good or unchanged inference ability. Previous literature was ex-
plored, and techniques that damage graph structure to harm overall
downstream GCN performance are evaluated. Existing data pro-
tection methods are deemed unable to address the novel problem
setting because they affect entire graph performance or are unable
to affect a downstream user, so a novel method is proposed: Selec-
tive Learnability Lock (SLL). SLL produces a “lock”, a collection of
edge modifications that can be applied/removed easily from the
graph data. SLL uses a surrogate GCN to approximate the down-
stream users, and optimizes graph topology to minimize loss on
the authorized set of nodes of the graph and maximize loss on the
protected set. The changes to the loss are reflected in downstream
GCNs trained on the modified data. SLL is further improved by
“gradient guidance” in the perturbation process, helping to avoid
oversampling less important edge regions in larger adjacency ma-
trices. SLL is experimentally effective compared to other possible
approaches such as simplistic methods (removing all edges of a
certain criteria) and applying random noise, and can be extended
to affect multiple tasks (with features serving a tasks in the exper-
iment). SLL primarily reduces homophily between the protected
and authorized sets, and slightly reduces graph homophily overall.
Investigating the impacts of SLL on similar/orthogonal tasks to
label classification that are not directly included in the loss equa-
tion could be beneficial to scoping the impact of SLL on graph’s
learnability.
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